pyActigraphy.analysis.LIDS.lids_transform

LIDS.lids_transform(ts, method='mva', win_td='30min', resampling_freq=None)[source]

Apply LIDS transformation to activity data

This transformation comprises:

  • resampling via summation (optional)

  • non-linear LIDS transformation

  • smoothing with a centered moving average

Parameters
  • ts (pandas.Series) – Data identified as locomotor activity during sleep.

  • method (str, optional) –

    Method to smooth the data. Available options are:

    • ’mva’: moving average

    • ’kernel’: gaussian kernel

    • ’none’: no smoothing

    Default is ‘mva’.

  • win_td (str, optional) – Size of the moving average window. Default is ‘30min’.

  • resampling_freq (str, optional) – Frequency of the resampling applied prior to LIDS transformation. Default is None.

Returns

smooth_lids

Return type

pandas.Series