pyActigraphy.sleep.ScoringMixin.Roenneberg¶
- ScoringMixin.Roenneberg(trend_period='24h', min_trend_period='12h', threshold=0.15, min_seed_period='30Min', max_test_period='12h', r_consec_below='30Min', rsfreq=None)[source]¶
Automatic sleep detection.
Identification of consolidated sleep episodes using the algorithm developped by Roenneberg et al. [1].
- Parameters
trend_period (str, optional) – Time period of the rolling window used to extract the data trend. Default is ‘24h’.
min_trend_period (str, optional) – Minimum time period required for the rolling window to produce a value. Values default to NaN otherwise. Default is ‘12h’.
threshold (float, optional) – Fraction of the trend to use as a threshold for sleep/wake categorization. Default is ‘0.15’
min_seed_period (str, optional) – Minimum time period required to identify a potential sleep onset. Default is ‘30Min’.
max_test_period (str, optional) – Maximal period of the test series. Default is ‘12h’
r_consec_below (str, optional) – Time range to consider, past the potential correlation peak when searching for the maximum correlation peak. Default is ‘30Min’.
rsfreq (str, optional) – Resampling frequency used to evaluate the sleep periods. The final time series with rest/activity scores is returned with a frequency equal to one of the input data. If set to None, no resampling is performed. Default is None.
- Returns
rbg – Time series containing the estimated periods of rest (1) and activity (0).
- Return type
pandas.core.Series
Notes
Warning
The performance of this algorithm has been evaluated for actigraphy data aggregated in 10-min bins [2].
References
- 1
Roenneberg, T., Keller, L. K., Fischer, D., Matera, J. L., Vetter, C., & Winnebeck, E. C. (2015). Human Activity and Rest In Situ. In Methods in Enzymology (Vol. 552, pp. 257-283). http://doi.org/10.1016/bs.mie.2014.11.028
- 2
Loock, A., Khan Sullivan, A., Reis, C., Paiva, T., Ghotbi, N., Pilz, L. K., Biller, A. M., Molenda, C., Vuori‐Brodowski, M. T., Roenneberg, T., & Winnebeck, E. C. (2021). Validation of the Munich Actimetry Sleep Detection Algorithm for estimating sleep–wake patterns from activity recordings. Journal of Sleep Research, April, 1–12. https://doi.org/10.1111/jsr.13371
Examples