pyActigraphy.io.BaseRaw.Scripps¶
- BaseRaw.Scripps(scale=0.204, window=array([0.0064, 0.0074, 0.0112, 0.0112, 0.0118, 0.0118, 0.0128, 0.0188, 0.028, 0.0664, 0.03, 0.0112, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), threshold=1.0)¶
Scripps Clinic algorithm for sleep-wake identification.
Algorithm for automatic sleep scoring based on wrist activity, developed by Kripke et al [1].
- Parameters
scale (float, optional) – Scale parameter P Default is 0.204.
window (np.array, optional) – Array of weighting factors \(W_{i}\) Default values are identical to those found in the original publication [1].
threshold (float, optional) – Threshold value for scoring sleep/wake. Default is 1.0.
- Returns
scripps – Time series containing the D scores (0: sleep, 1: wake) for each epoch.
- Return type
pandas.core.Series
Notes
The output variable D of the Scripps algorithm is defined in [1] as:
\[D = P*( [W_{-10},\dots,W_{0},\dots,W_{+10}] \cdot [A_{-10},\dots,A_{0},\dots,A_{+10}])\]with:
D < 1 == sleep, D >= 1 == wake;
P, scale factor;
\(W_{0},W_{-1},W_{+1},\dots\), weighting factors for the present epoch, the previous epoch, the following epoch, etc.;
\(A_{0},A_{-1},A_{+1},\dots\), activity scores for the present epoch, the previous epoch, the following epoch, etc.
References
- 1(1,2,3)
Kripke, D. F., Hahn, E. K., Grizas, A. P., Wadiak, K. H., Loving, R. T., Poceta, J. S., … Kline, L. E. (2010). Wrist actigraphic scoring for sleep laboratory patients: algorithm development. Journal of Sleep Research, 19(4), 612–619. http://doi.org/10.1111/j.1365-2869.2010.00835.x