{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": true }, "source": [ "

Table of Contents

\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Non-parametric variables with pyActigraphy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Non-parametric variables such as:\n", "\n", "* Interdaily stability (IS)\n", "* Intradaily variability (IV)\n", "* Relative amplitude (RA)\n", "\n", "can easily be calculated with the pyActigraphy package." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First import the pyActigraphy package and read your favorite actigraphy data file:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.296909Z", "start_time": "2023-01-30T15:45:53.664088Z" } }, "outputs": [], "source": [ "import pyActigraphy" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.300207Z", "start_time": "2023-01-30T15:45:55.298268Z" } }, "outputs": [], "source": [ "import os\n", "fpath = os.path.join(os.path.dirname(pyActigraphy.__file__),'tests/data/')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.317262Z", "start_time": "2023-01-30T15:45:55.301950Z" } }, "outputs": [], "source": [ "# Read test file\n", "raw = pyActigraphy.io.read_raw_awd(fpath+'example_01.AWD')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Interdaily stability & intradaily variability" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For both variables, the default parameters are:\n", "\n", "* resampling frequency = '1H'\n", "* binarize data = True\n", "* threshold = 4" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.330230Z", "start_time": "2023-01-30T15:45:55.319102Z" } }, "outputs": [ { "data": { "text/plain": [ "0.527656245354158" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IS()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.339861Z", "start_time": "2023-01-30T15:45:55.332372Z" } }, "outputs": [ { "data": { "text/plain": [ "0.32913524895082263" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IV()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, it is possible to change these parameters." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Changing the resampling frequency" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To calculate the IS&IV with a resampling frequency of 30 minutes, for example:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.348874Z", "start_time": "2023-01-30T15:45:55.340906Z" } }, "outputs": [ { "data": { "text/plain": [ "0.49538299172546324" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IS(freq='30min')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.356604Z", "start_time": "2023-01-30T15:45:55.349971Z" } }, "outputs": [ { "data": { "text/plain": [ "0.314973337080311" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IV(freq='30min')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Changing the threshold" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To calculate IS&IV with a different threshold on the activity count when binarizing the data:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.366903Z", "start_time": "2023-01-30T15:45:55.358343Z" } }, "outputs": [ { "data": { "text/plain": [ "0.5418567121727559" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IS(threshold=10)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.375728Z", "start_time": "2023-01-30T15:45:55.369454Z" } }, "outputs": [ { "data": { "text/plain": [ "0.33654319292100576" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IV(threshold=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Without binarizing the data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is also possible to calculate these variables without binarizing the data:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.384412Z", "start_time": "2023-01-30T15:45:55.377329Z" } }, "outputs": [ { "data": { "text/plain": [ "0.46561431150973936" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IS(binarize=False)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.391180Z", "start_time": "2023-01-30T15:45:55.385466Z" } }, "outputs": [ { "data": { "text/plain": [ "0.7095292983583361" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IV(binarize=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Relative amplitude" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, the default parameters for the relative amplitude (RA) are:\n", "\n", "* binarize data = True\n", "* threshold = 4\n", "\n", "It is not possible to specify a resampling frequency as the RA is independant of this parameter." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.410045Z", "start_time": "2023-01-30T15:45:55.392267Z" } }, "outputs": [ { "data": { "text/plain": [ "0.7576503909857768" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.RA()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.425131Z", "start_time": "2023-01-30T15:45:55.411562Z" }, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "0.9168632026873167" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.RA(binarize=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mean IS and IV" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In _Nonparametric methods in actigraphy: An update_, Gonçalves et al. introduced two new variables, ISm and IVm, as the mean of the IS and IV (respectively) values calculated as different resampling frequencies." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These two additional variables are also available in the **_pyActigraphy_** package.\n", "For both variables, the default parameters are:\n", "\n", "* resampling frequencies = [1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60] (min)\n", "* binarize data = True\n", "* threshold = 4" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.500727Z", "start_time": "2023-01-30T15:45:55.426742Z" } }, "outputs": [ { "data": { "text/plain": [ "0.47064337220625074" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.ISm()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.554141Z", "start_time": "2023-01-30T15:45:55.501878Z" } }, "outputs": [ { "data": { "text/plain": [ "0.2706746158264432" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.IVm()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To change the resampling frequencies:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.557479Z", "start_time": "2023-01-30T15:45:55.555246Z" } }, "outputs": [], "source": [ "new_resampling_frequencies = ['5min','30min','1H']" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.572834Z", "start_time": "2023-01-30T15:45:55.559072Z" } }, "outputs": [ { "data": { "text/plain": [ "0.48841431777142963" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.ISm(freqs=new_resampling_frequencies)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IS, IV and RA per period" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**_pyActigraphy_** introduces a new concept concerning the calculation of the non-parametric variables: it is now possible to calculate them per period." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The acquisition period is split in consecutive periods with the required length (if possible) and the non-parametric variable is then calculated for each period:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.581735Z", "start_time": "2023-01-30T15:45:55.574008Z" } }, "outputs": [ { "data": { "text/plain": [ "[0.6876777827182482]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.ISp()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, the period length is 7 days. But this parameter can easily be changed:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.592836Z", "start_time": "2023-01-30T15:45:55.582775Z" } }, "outputs": [ { "data": { "text/plain": [ "[0.629359516562714, 0.8780603587977001, 0.43948376768341835]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Period of 4 days for example\n", "raw.ISp(period='4D')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to find out how many periods were found in the actigraphy record:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "ExecuteTime": { "end_time": "2023-01-30T15:45:55.605138Z", "start_time": "2023-01-30T15:45:55.594570Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of periods: 3\n", " Time unaccounted for: 0 days, 18h, 0m, 0s\n" ] }, { "data": { "text/plain": [ "[0.629359516562714, 0.8780603587977001, 0.43948376768341835]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw.ISp(period='4D', verbose=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Et voilà!" ] } ], "metadata": { "kernelspec": { "display_name": "pyActi37", "language": "python", "name": "pyacti37" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }